
Scalable Expressiveness through Preprocessed Graph
Perturbations

Danial Saber
danial.saber@ontariotechu.ca

Ontario Tech University
Oshawa, Ontario, Canada

Amirali Salehi-Abari
abari@ontariotechu.ca
Ontario Tech University
Oshawa, Ontario, Canada

ABSTRACT
Graph Neural Networks (GNNs) have emerged as the predominant
method for analyzing graph-structured data. However, canonical
GNNs have limited expressive power and generalization capability,
thus triggering the development of more expressive yet compu-
tationally intensive methods. One such approach is to create a
series of perturbed versions of input graphs and then repeatedly
conduct multiple message-passing operations on all variations dur-
ing training. Despite their expressive power, this approach does
not scale well on larger graphs. To address this scalability issue,
we introduce Scalable Expressiveness through Preprocessed Graph
Perturbation (SE2P). This model offers a flexible, configurable bal-
ance between scalability and generalizability with four distinct
configuration classes. Our extensive experiments demonstrate that
SE2P can enhance generalizability compared to benchmarks while
achieving significant speed improvements of up to 8-fold.1

KEYWORDS
Graph Neural Networks, Scalability, Graph Perturbation

ACM Reference Format:
Danial Saber andAmirali Salehi-Abari. 2024. Scalable Expressiveness through
Preprocessed Graph Perturbations. In Proceedings of the 33rd ACM Interna-
tional Conference on Information and Knowledge Management (CIKM ’24),
October 21–25, 2024, Boise, ID, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3627673.3679993

1 INTRODUCTION
Graph Neural Networks (GNNs) have applications in various do-
mains, such as recommender systems [48], protein modeling [16],
educational systems [37], and knowledge graph completion [1].
However, graph data’s complexity, scale, and dynamic nature pose
substantial challenges to GNNs, emphasizing the importance of
improving their generalization and computational efficiency.

Message-passing GNNs (MPNNs), a popular class of GNNs, fa-
cilitate the exchange of messages between nodes to integrate their
local structural and feature information within a graph. However,

1An extended version of this work is available in [42].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’24, October 21–25, 2024, Boise, ID, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0436-9/24/10
https://doi.org/10.1145/3627673.3679993

MPNNs are limited by the 1-dimensional Weisfeiler-Lehman (1-WL)
graph-isomorphism test [27], and are not scalable to large graphs.

Several approaches have been proposed to enhance the com-
putational efficiency of MPNNs, such as removing intermediate
non-linearities in GNN layers [13, 14, 32, 47, 59], graph down-
sampling during preprocessing [10, 31, 44, 55] or sampling dur-
ing message-passing [8, 9, 18, 21, 51, 62]. All these approaches
are still limited by the 1-WL expressivity constraint. To go be-
yond 1-WL expressive power, a wide variety of solutions have
been proposed, suffering from scalability issues: Higher-order GNNs
[29, 33] require (at least) cubic computational complexity for mes-
sage passing [57, 60]; Feature-augmented GNNs require computing
computationally-expensive features like structural encodings [3, 6],
geodesic distances [28, 46, 58], and positional encodings [12]; and
Subgraph GNNs [4, 22, 23, 39–41, 53] typically involve extracting
multiple overlapping large subgraphs, which their cumulative size
are significantly large, sometimes to hundreds of times the size of
the original graph, rendering them impractical for large graphs.
Our approach. We introduce Scalable Expressiveness through Pre-
processed Graph Perturbation (SE2P), a model combining flexibility,
scalability, and expressiveness. Our approach offers four configu-
ration classes, each offering a unique balance between scalability
and generalizability. Through preprocessing, SE2P generates multi-
ple perturbations of the input graph by a perturbation policy (e.g.,
random node removal) and diffuses nodal features across each per-
turbed graph. Despite its diffusion similarity to SGCN [47] and its
variants [13, 14, 32, 59], SE2P leverages the expressive power offered
bymultiple perturbed graphs [4, 39] to surpass 1-WL expressiveness
limits. The flexibility of SE2P is of practical importance, allowing for
the selection of learnable or non-learnable aggregation functions
and thus enabling scalable or expressive variations of many models.
Our empirical results demonstrate significant speedup (up to 8×)
and enhanced generalizability for SE2P compared to baselines.

2 PREDICTION TASK AND BACKGROUND
We consider an undirected graph 𝐺 = (𝑉 , 𝐸) with |𝑉 | = 𝑛 nodes,
|𝐸 | = 𝑚 edges, and adjacency matrix A ∈ R𝑛×𝑛 . Each node 𝑖 ∈ 𝑉

possesses the 𝑑-dimensional feature vector x𝑖 ∈ R𝑛 , which can be
viewed as the 𝑖-th row of 𝑛 × 𝑑 feature matrix X.
Prediction Task. Graph classification or regression involves pre-
dicting a label (e.g., carcinogenicity classification [45]) or a property
(e.g., molecule solubility level [17]) for an entire graph based on
its structure and associated features (e.g., node or edge features).
Specifically, the task is formulated as a supervised learning problem,
aiming to learn a mapping function 𝑓 : G → Y, given a labeled
dataset 𝐷 = {(𝐺𝑖 , 𝑦𝑖)}, where G is input space, and Y is class label
space (or real for regression),𝐺𝑖 is input graph sample, and 𝑦𝑖 is an

1

https://doi.org/10.1145/3627673.3679993
https://doi.org/10.1145/3627673.3679993

CIKM ’24, October 21–25, 2024, Boise, ID, USA Saber and Salehi-Abari

expected label (or property). Although GNNs have demonstrated
significant success in graph classification or regression tasks [19],
their expressive power is limited by the 1-WL test [36, 49].
Perturbed GNNs. To overcome 1-WL expressivity limitation, Per-
turbed GNNs (e.g., DropGNN [39]) applies a shared GNN on 𝑅

different perturbations of the input graph (during both training
and testing). For each perturbation (A𝑟 ,X𝑟), some graph structure
(e.g., nodes or edges) is randomly changed. For example, DropGNN
randomly drops out some nodes for each perturbation. In perturbed
GNNs, a shared 𝐿-layer GNN operates on each perturbation to gen-
erate perturbed node representations Z𝑟 = GNN(A𝑟 ,X𝑟). These
perturbed embeddings are then merged into final node embeddings
using an aggregator function: Z = MERGE (Z1, · · · ,Z𝑅). Through
multiple perturbations, the model observes slightly perturbed vari-
ants of the same 𝐿-hop neighborhood around any node. Thus, even
if the non-isomorphic neighborhoods are indistinguishable by the
standard GNNs, their randomly modified variants are more likely
distinguishable, yielding higher expressive power. However, Per-
turbed GNNs (e.g., DropGNN) face major scalability issues as the
number of perturbations increases in large datasets.
Simplified Diffusion-Based Models. An approach to enhance
the scalability of GNNs is simplifying their architectures by elimi-
nating their intermediate non-linearities [13, 14, 32, 47, 59]. This
technique allows for the precomputation of feature propagation and
further acceleration. For instance, SGCN [47] removes intermediate
non-linearities in an 𝐿-layer GCN, predicting node class labels Y
using Y = 𝜎 (A𝐿XW), where 𝜎 is a non-linear function, and W is a
weight matrix. The diffusion term A𝐿X can be precomputed before
training. SIGN [14] extends SGCN by considering a set of diffusion
matrices rather than just one. The diffusion terms in our model
share some similarities with SIGN. However, unlike our method,
the expressivity of SGCN and SIGN is bounded by the 1-WL.

3 SE2P
Inspired by the expressive power of methods relying on gener-
ating perturbations (e.g., DropGNN [39]), we propose Scalable
Expressiveness through Preprocessed Graph Perturbations (SE2P). In
SE2P, we first generate different perturbations of the input graph
(e.g., through random node dropout) to improve expressiveness.
The scalability is offered by once precomputing feature diffusions
over perturbed graphs and removing the need for message-passing
during training. As illustrated in Fig. 1, SE2P generates a set of 𝑅
graph perturbations {(A𝑟 ,X𝑟)} for graph 𝐺 with adjacency matrix
A and feature matrix X. Although SE2P accommodates any pertur-
bation kind (e.g., node removal, subgraph sampling, etc.), we here
consider random nodal removal as a perturbation due to its theoret-
ical expressiveness power [39]. In each perturbation (A𝑟 ,X𝑟), any
node of the original graph𝐺 is removed with probability 𝑝 . Each

perturbed adjacency matrix A𝑟 is normalized by Â𝑟 = D
− 1

2
𝑟 A𝑟D

− 1
2

𝑟 ,
where D𝑟 is the diagonal matrix of A𝑟 . To emulate the message-
passing of GNNs on perturbed graphs, we apply feature diffusion
by Â𝑟Xr. Similarly, the message passing of an 𝐿-layer GNN can
be emulated by Â𝐿

𝑟 Xr, which can be once precomputed before the
training for each perturbed graph as a preprocessing step. To en-
hance node representation in each perturbed graph, we emulate

jumping knowledge [49] by

Z𝑟 = COMBINE(X, Â1
𝑟X𝑟 , · · · , Â𝐿

𝑟 X𝑟), (1)

where COMBINE combines all the virtual 𝐿 layer’s output with
the original feature matrix into the node embedding matrix of the
perturbed graph. The examples ofCOMBINE can be simple readout-
type operators (e.g., column-wise vector concatenation) or learnable
adaptive aggregation mechanisms (e.g., DeepSet [54]). When the
simple non-learnable operator is deployed, we compute Z𝑟 through
preprocessing steps for more speedup.

The next step is to aggregate node representations of perturbed
graphs {Z𝑟 } to a single nodal representation matrix Z:

Z = MERGE(Z1, · · · ,Z𝑅), (2)

where several options exist forMERGE ranging from non-learnable
aggregation methods (e.g., element-wise mean) to learnable set ag-
gregations (e.g., DeepSet). While non-learnable aggregation meth-
ods such as averaging provide simplicity and computational effi-
ciency, they risk overriding and blending information across per-
turbed graphs, possibly leading to the loss or dilution of discrimi-
native information. However, all computations up to this point can
occur during the preprocessing phase, provided that aggregations
in Eqs. 1 and 2 are non-learnable. This preprocessing offers a consid-
erable speedup since the message-passing of a multi-layer GNN on
multiple perturbed graphs is emulated by one-time preprocessing
steps rather than iterative computations during training. When
more expressiveness is desired over scalability, one can employ
learnable aggregation over perturbed graphs.

For graph prediction tasks, we then apply a POOL function to
aggregate nodes’ final representations into a graph representa-
tion z𝐺 = POOL(Z), where POOL function can be non-learnable
(e.g., element-wise sum) or a learnable graph pooling method. Non-
learnable functions can speed up computation, specifically if they
are precomputable. However, they reduce the model’s expressive-
ness by lacking non-linearities. If higher expressiveness is desired,
given some computational budget, one might consider learnable
graph pooling methods such as hierarchical or top-k pooling [7,
15, 25, 52], global soft attention layer [30], set-transformer [26], or
even MLP combined non-learnable aggregators (e.g., sum or mean).
After pooling, the graph representation z𝐺 undergoes learnable
non-linearities to get the class probabilities.
How does SE2P trade-off scalability and expressivity? The
SE2P’s aggregation functions COMBINE,MERGE, and POOL bal-
ance scalability and expressivity, configurable as either learnable
or non-learnable. This creates four practical configuration classes
within SE2P, where each class is identified by which aggregator is
learnable or not. Configuration C1 maximizes scalability by making
all functions non-learnable, allowing maximal precomputation be-
fore training. Configuration C2 improves expressivity with a learn-
able POOL, while COMBINE and MERGE remain non-learnable
and pre-computable. Configuration C3 further enhances expres-
sivity by making POOL andMERGE learnable. Configuration C4,
with all learnable functions, offers the highest expressivity but the
least scalability due to minimal preprocessing. Moving from C1 to
C4 increases expressiveness but reduces scalability, as it allows less
preprocessing to ease training’s computational burden.

2

Scalable Expressiveness through Preprocessed Graph Perturbations CIKM ’24, October 21–25, 2024, Boise, ID, USA

C
O
M

B
IN

E

M
E
R
G

E

P
O
O
L

Diffusion

Input graph

C1

C2

C3

C4

zG

X1

X1A1
1

X1AL
1

C
O
M

B
IN

E

P
r
e
d
ic
t
io

n
o
u
t
p
u
t

XR

XRA1
R

XRAL
R

Z1

ZR

b
c

d

e

f

a

b

c

d

Z

a

b
c

d
e

f

X

a

b
c

d
e

f

a

A

b c

d e

f

Graph perturbations

XR

AR

a

b
c

d

A1

b c

d e

f
X1

b
c

d
e

f

a

b c

d

M
L
P

Non-learnable

Learnable

Training

Preprocessing

Figure 1: SE2P first generates 𝑅 perturbations of the input graph with new adjacency and feature matrices (A𝑟 ,X𝑟). Next, node
features are diffused for each perturbation by a set of diffusion matrices. Then, the COMBINE function combines these diffused
features for each perturbed graph into feature matrices Z𝑟 . All these matrices then undergo theMERGE function to generate
the graph’s representation matrix Z. POOL is then applied to create a graph representation 𝑧𝐺 , which is transformed by an
MLP to the predicted output. The functions COMBINE,MERGE, and POOL are either non-learnable (blue circle) or learnable (red
circle). This flexibility allows us to choose between different configuration classes (C1–C4) to balance scalability, achieved by
including more preprocessing steps (blue line), and expressivity, achieved by more learnability (red line).

Table 1: Preprocessing and inference time complexities. 𝑅
is the number of perturbations, 𝐿 is the number of (virtual)
layers, 𝑛 is the number of nodes,𝑚 is the number of edges,
and 𝑑 is the feature and hidden dimensions.

DropGNN SE2P-C1 SE2P-C2 SE2P-C3 SE2P-C4

Prep. 𝑂 (1) 𝑂 (𝑅𝐿𝑚𝑑) 𝑂 (𝑅𝐿𝑚𝑑) 𝑂 (𝑅𝐿𝑚𝑑) 𝑂 (𝑅𝐿𝑚𝑑)
Inf. 𝑂 (𝐿𝑅 (𝑛𝑑2 +𝑚𝑑)) 𝑂 (𝑑2) 𝑂 (𝑛𝑑2) 𝑂 (𝑅𝑛𝑑2) 𝑂 (𝑅𝐿𝑛𝑑2)

Our configurations for SE2P. We implemented and studied four
instances of SE2P, covering all configuration classes, with spe-
cific COMBINE,MERGE, and POOL functions. SE2P-C1 (maximum
scalability) uses column-wise vector concatenation for COMBINE,
element-wise mean for MERGE, and element-wise sum pooling
for POOL. SE2P-C2 replaces the sum pooling of SE2P-C1 with a
learnable POOL function, which consists of an MLP followed by
element-wise sum pooling. SE2P-C3 is the same as SE2P-C2 except
for leveraging Deepsets as a learnableMERGE function. The least
scalable but most expressive configuration is SE2P-C4, which re-
places the non-learnableCOMBINE of SE2P-C3 to Deepsets. Table 1
summarizes our running time analyses of these variants [42].

4 EXPERIMENTS
Our experiments aim to empirically validate the scalability and
generalizability of our SE2P models against various benchmarks.
Datasets. We experiment with four datasets from the TU datasets
collection [35] (PROTEINS [5, 11], PTC-MR [45], IMDB-M [50], and
COLLAB [50]) and two datasets from Open Graph Benchmark [20]
(OGBG-MOLHIV and OGBG-MOLTOX). For TU datasets, We use the
same dataset splitting deployed by other studies [4, 39, 49, 61]
whereas for OGB we use their provided scaffold splits.
Baselines. For TU datasets, we compare our model against WL
subtree [43], DCNN [2], DGCNN [56], PATCHY-SAN [38], IGN

Table 2: Average validation accuracy (%), TU datasets. The
best result is in bold. In parenthesis: the ranks of our model
against baselines (1st, 2nd, and 3rd are colored), and compar-
ison to DropGNNs (=better, =comparable with difference <
0.2, and =worse). OOM denotes out of memory.

Model PROTEINS PTC-MR IMDB-M COLLAB

WL subtree 75.0 ± 3.1 59.9 ± 4.3 50.9 ± 3.8 78.9 ± 1.9
DCNN 61.3 ± 1.6 56.6 ± 1.2 33.5 ± 1.4 52.1 ± 2.7
DGCNN 75.5 ± 0.9 58.6 ± 2.5 47.8 ± 0.9 73.7 ± 0.4
PATCHYSAN 75.0 ± 2.5 62.3 ± 5.7 45.2 ± 2.8 72.6 ± 2.2
IGN 76.6 ± 5.5 58.5 ± 6.9 48.7 ± 3.4 78.3 ± 2.5
GIN 75.4 ± 5.0 63.9 ± 8.3 51.5 ± 4.0 82.2 ± 2.1
GCN 75.9 ± 5.5 64.2 ± 9.7 52.0 ± 4.1 82.6 ± 2.2
DropGIN 76.1 ± 5.1 65.2 ± 9.8 52.3 ± 3.8 OOM
DropGCN 76.1 ± 5.8 64.5 ± 9.1 52.1 ± 3.3 OOM
SE2P-C1 74.7± 5.7 (9,) 64.5± 8.0 (2,) 52.1± 2.8 (2,) 79.8± 1.8 (3,)
SE2P-C2 77.6± 6.3 (1,) 65.1± 7.3 (2,) 52.3± 2.3 (1,) 83.3± 2.1 (1,)
SE2P-C3 77.6 ± 5.0 (1,) 66.2 ± 6.8 (1,) 52.9 ± 3.5 (1,) 83.5 ± 1.7 (1,)
SE2P-C4 76.8± 4.7 (1,) 66.1± 8.8 (1,) 52.4± 2.4 (1,) 82.8± 2.1 (1,)

[34], GCN [24], GIN [49], DropGIN [39], and DropGCN.2 On OGB
datasets, we compare against GCN, GIN, DropGCN, and DropGIN.
Experimental setup. To fairly compare DropGNN [39] and SE2P
variants, we usedDropGNN’s recommended hyperparameters: drop-
ping node probability 𝑝 = 2

1+𝛾 and number of perturbations𝑅 = ⌊𝛾⌋,
where 𝛾 is the dataset’s average node degree. We set the number of
(virtual) layers to 𝐿 = 2 or 3. For TU benchmark evaluations, we
present the accuracies of the WL subtree kernel, DCNN, DGCNN,
PATCHY-SAN, and IGN, as reported in their original papers, which
all share the same experimental setup as ours, adopted from [49].
Under this experimental setup, we also reproduced the results for
GCN [24], GIN [49], DropGIN [39], and DropGCN for our scalabil-
ity comparisons. We grid-searched the hyperparameters for these
baselines and SE2P variants on the recommended search spaces

2Our introduced DropGCN has replaced GIN layers with GCN layers in DropGIN.

3

CIKM ’24, October 21–25, 2024, Boise, ID, USA Saber and Salehi-Abari

Table 3: Runtimes on TU datasets. Inference time (Inf.) is the
time per epoch (avg. over 350 epochs). Run includes prepro-
cessing time (Pre.) and total inference time. SE2P are color-
coded by faster , comparable , and slower than any of base-
lines. The speedup corresponds to the ratio of time taken by
the slowest baseline compared to our model. Pre. and inf. are
in seconds, while Run is in minutes.

PROTEINS PTC-MR IMDB-M COLLAB

Model Pre. Inf. Run Pre. Inf. Run Pre. Inf. Run Pre. Inf. Run

GIN − 0.74 4.3 − 1.52 8.8 − 0.72 4.2 − 3.87 22.5
GCN − 0.71 4.1 − 0.64 3.7 − 0.73 4.2 − 2.62 15.3
DropGIN − 0.86 5.0 − 1.74 10.1 − 0.94 5.4 − OOM OOM
DropGCN − 0.94 5.4 − 0.86 5.0 − 1.19 6.9 − OOM OOM

SE2P-C1 8.7 0.27 1.7 1.8 0.22 1.3 4.0 0.23 1.4 230.3 0.26 5.3
Speedup − 3.48 3.19 − 7.90 7.70 − 5.17 4.97 − 14.88 4.21
SE2P-C2 8.7 0.41 2.5 1.7 0.28 1.6 4.0 0.37 2.2 224.2 0.72 7.9
Speedup − 2.29 2.16 − 6.21 6.02 − 3.13 3.14 − 5.37 2.84
SE2P-C3 8.5 1.34 7.9 1.6 0.70 4.1 3.1 0.82 4.8 220.2 20.06 120.6
Speedup − 0.70 0.68 − 2.48 2.46 − 1.45 1.43 − 0.19 0.18
SE2P-C4 8.5 7.06 41.3 1.4 3.58 20.9 3.0 2.61 15.3 214.7 42.86 253.5
Speedup − 0.13 0.13 − 0.48 0.48 − 0.45 0.45 − 0.09 0.08

Table 4: Average ROC-AUC (%) over 10 runs, OGB datasets.
The best is in Bold. The preprocessing and the inference time
are in seconds. The total runtime is in minutes. Color-coding
is faster , comparable , and slower than any of baselines.

Model OGBG-MOLHIV OGBG-MOLTOX21

Test Prep. Inf. Run Test Prep. Inf. Run

GIN 74.0±1.9 − 3.5 5.9 72.7±1.7 − 1.6 2.6
GCN 74.1±1.9 − 3.5 5.9 72.2±1.1 − 1.7 2.8
DropGIN OOM − − − 73.6±1.0 − 2.3 3.8
DropGCN OOM − − − 72.1±1.2 − 2.5 4.2
SE2P-C1 71.4±1.3 170.5 1.8 5.8 71.6±0.5 22.6 0.6 1.3
SE2P-C2 74.0±1.4 169.7 2.2 6.5 72.9±0.6 22.5 0.8 1.8
SE2P-C3 74.5 ± 2.6 171.6 11.2 21.5 73.5±1.0 22.6 2.4 4.4
SE2P-C4 OOM 173.1 − − 74.1 ± 1.0 22.6 11.3 19.3

[39]. For the OGB benchmark, we employed the same hyperparam-
eter tuning of the TU benchmark, and then followed the evaluation
procedure proposed in [20]: we ran each experiment with 10 differ-
ent random seeds, and models were optimized using Adam for 100
epochs. We report the average test accuracies corresponding to the
best average validation accuracy.3

Results and Discussions. Table 2 shows the validation accuracy
results on TU datasets. SE2P-C3 outperforms other SE2P configu-
rations and baselines across all datasets, improving generalizabil-
ity over all baselines ranging from 0.6% (in IMDB-M) to 1.5% (in
PROTEINS). SE2P-C2 and SE2P-C4 also show competitive perfor-
mance, securing the top three-ranked methods among all baselines
for all datasets. For instance, SE2P-C4 improves or shows compa-
rable results to all baselines in all datasets. Our least expressive
SE2P-C1 model performs sub-optimally on the PROTEINS dataset
but is relatively competitive in other datasets (e.g., PTC-MR, IMDB-M,
COLLAB) by being ranked among the top three of baselines. The
poor performance in PROTEINS might be due to the lack of non-
linearity before obtaining the graph representation and complexity
3The code is available at https://github.com/Danial-sb/SE2P.

of the dataset. Except SE2P-C1, models with perturbations outper-
form baselines without graph perturbation (e.g., GCN, IGN), indicat-
ing that graph perturbations are a simple yet effective method for
enhancing generalization. Compared to DropGNN with graph per-
turbations, SE2P configurations (except SE2P-C1) show comparable
or better generalizability and handle scalability issues, avoiding
OOM in COLLAB and reducing training times for other datasets.4

We further compare the runtime efficiency of SE2P configura-
tions with GCN, GIN, DropGCN, and DropGIN in Table 3. SE2P’s
preprocessing time ranges from almost 2 seconds for PTC-MR to 4
minutes for COLLAB. Across all datasets, SE2P-C1 and SE2P-C2 are
faster than the baselines in training and total runtime (including
preprocessing and training time over all epochs). The speedup for
total runtime ranges from 3.19× (in PROTEINS) to 7.70× (in PTC-MR)
for SE2P-C1, and from 2.16× (in PROTEINS) to 6.02× (in PTC-MR)
for SE2P-C2. SE2P-C3 has comparable runtime to the baselines (ex-
cept for COLLAB) while improving generalizability. SE2P-C4 is the
slowest model due to its longer training time. Overall, if 3-6× scala-
bility with comparable generalizability is desired, SE2P-C2 is the
best option. For maintaining baseline scalability while consistently
improving generalizability, SE2P-C3 is recommended.

Table 4 shows the results on the OGB datasets. In OGBG-MOLHIV,
SE2P-C2 achieves comparable results to the baselines while offering
a speedup of roughly 30%. SE2P-C3 outperforms baselines but at
the cost of longer training times. DropGCN, DropGIN, and SE2P-C4
faced out-of-memory issues, primarily due to the large number of
graphs (48, 127 graphs) and extensive message-passing over many
graph perturbations (for DropGCN and DropGIN) and feature trans-
formation over diffusion sets of each perturbation (for SE2P-C4). In
OGBG-MOLTOX, all methods utilizing node-dropout perturbations
(except SE2P-C1, which lacks sufficient non-linearity and expres-
sivity) outperform the two baselines without graph perturbations.
For comparable performance and faster runtime, SE2P-C2 is pre-
ferred. It demonstrates roughly a 30% speed improvement over
the fastest baseline (GIN) and a 130% speed improvement over the
slowest baseline (DropGCN). For higher generalization, SE2P-C3
and SE2P-C4 are recommended despite reduced scalability.5

5 CONCLUSION AND FUTUREWORK
We introduced SE2P, a flexible framework with four configuration
classes that balance scalability and generalizability. SE2P lever-
ages graph perturbations and feature diffusion in the preprocessing
stage and offers choices between learnable and non-learnable aggre-
gators to achieve the desirable scalability-expressiveness balance.
Our experiments on an extensive set of benchmarks validate the
effectiveness of SE2P. Future directions include exploring other
graph perturbation policies, providing theoretical analyses of graph
perturbations through the lens of matrix perturbation theory, and
developing adaptive methods for selecting the number of perturba-
tions.

4We encountered out-of-memory issues for DropGNN on the COLLAB dataset due to
the large number of perturbations per graph. Reducing the batch size allows these mod-
els to run, but the results were suboptimal. We report OOM to highlight computational
bottlenecks rather than expressiveness concerns.
5Our sensitivity analyses in the extended version [42], show that, in most cases, SE2P
models with sub-optimal hyperparameters perform comparably to those with optimal
hyperparameters, suggesting their insensitivity to hyperparameter settings.

4

Scalable Expressiveness through Preprocessed Graph Perturbations CIKM ’24, October 21–25, 2024, Boise, ID, USA

REFERENCES
[1] Siddhant Arora. 2020. A survey on graph neural networks for knowledge graph

completion. arXiv preprint arXiv:2007.12374 (2020).
[2] James Atwood and Don Towsley. 2016. Diffusion-convolutional neural networks.

Advances in neural information processing systems 29 (2016).
[3] Pablo Barceló, Floris Geerts, Juan Reutter, andMaksimilian Ryschkov. 2021. Graph

neural networks with local graph parameters. Advances in Neural Information
Processing Systems 34 (2021), 25280–25293.

[4] Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan,
Chen Cai, Gopinath Balamurugan, Michael M Bronstein, and Haggai Maron. 2021.
Equivariant subgraph aggregation networks. arXiv preprint arXiv:2110.02910
(2021).

[5] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan,
Alex J Smola, and Hans-Peter Kriegel. 2005. Protein function prediction via graph
kernels. Bioinformatics 21, suppl_1 (2005), i47–i56.

[6] Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein.
2022. Improving graph neural network expressivity via subgraph isomorphism
counting. IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 1
(2022), 657–668.

[7] Cătălina Cangea, Petar Veličković, Nikola Jovanović, Thomas Kipf, and Pietro
Liò. 2018. Towards sparse hierarchical graph classifiers. arXiv preprint
arXiv:1811.01287 (2018).

[8] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. Fastgcn: fast learning with graph
convolutional networks via importance sampling. arXiv preprint arXiv:1801.10247
(2018).

[9] Jianfei Chen and Jun Zhu. 2018. Stochastic training of graph convolutional
networks. (2018).

[10] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining. 257–266.

[11] Paul D Dobson and Andrew J Doig. 2003. Distinguishing enzyme structures from
non-enzymes without alignments. Journal of molecular biology 330, 4 (2003),
771–783.

[12] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. 2022. Graph Neural Networks with Learnable Structural and Po-
sitional Representations. In International Conference on Learning Representations.

[13] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang
Yang, Evgeny Kharlamov, and Jie Tang. 2020. Graph random neural networks for
semi-supervised learning on graphs. Advances in neural information processing
systems 33 (2020), 22092–22103.

[14] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Benjamin Chamberlain, Michael
Bronstein, and Federico Monti. 2020. SIGN: Scalable Inception Graph Neural
Networks. In ICML 2020 Workshop on Graph Representation Learning and Beyond.

[15] Hongyang Gao and Shuiwang Ji. 2019. Graph u-nets. In international conference
on machine learning. PMLR, 2083–2092.

[16] Wenhao Gao, Sai Pooja Mahajan, Jeremias Sulam, and Jeffrey J Gray. 2020. Deep
learning in protein structural modeling and design. Patterns 1, 9 (2020).

[17] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In International
conference on machine learning. PMLR, 1263–1272.

[18] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[19] William L Hamilton. 2020. Graph representation learning. Morgan & Claypool
Publishers.

[20] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118–22133.

[21] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018. Adaptive sam-
pling towards fast graph representation learning. Advances in neural information
processing systems 31 (2018).

[22] Yinan Huang, Xingang Peng, Jianzhu Ma, and Muhan Zhang. 2022. Boosting the
Cycle Counting Power of Graph Neural Networks with I2-GNNs. arXiv preprint
arXiv:2210.13978 (2022).

[23] Shweta Ann Jacob, Paul Louis, and Amirali Salehi-Abari. 2023. Stochastic sub-
graph neighborhood pooling for subgraph classification. In Proceedings of the
32nd ACM international conference on information and knowledge management.
3963–3967.

[24] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[25] Boris Knyazev, Graham W Taylor, and Mohamed Amer. 2019. Understanding
attention and generalization in graph neural networks. Advances in neural
information processing systems 32 (2019).

[26] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and
Yee Whye Teh. 2019. Set transformer: A framework for attention-based

permutation-invariant neural networks. In International conference on machine
learning. PMLR, 3744–3753.

[27] AA Leman and Boris Weisfeiler. 1968. A reduction of a graph to a canonical
form and an algebra arising during this reduction. Nauchno-Technicheskaya
Informatsiya 2, 9 (1968), 12–16.

[28] Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. 2020. Distance encod-
ing: Design provably more powerful neural networks for graph representation
learning. Advances in Neural Information Processing Systems 33 (2020), 4465–4478.

[29] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. 2019.
Graph matching networks for learning the similarity of graph structured objects.
In International conference on machine learning. PMLR, 3835–3845.

[30] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2015. Gated
graph sequence neural networks. arXiv preprint arXiv:1511.05493 (2015).

[31] Paul Louis, Shweta Ann Jacob, and Amirali Salehi-Abari. 2022. Sampling enclos-
ing subgraphs for link prediction. In Proceedings of the 31st ACM International
Conference on Information & Knowledge Management. 4269–4273.

[32] Paul Louis, Shweta Ann Jacob, and Amirali Salehi-Abari. 2023. Simplifying
subgraph representation learning for scalable link prediction. arXiv preprint
arXiv:2301.12562 (2023).

[33] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. 2019.
Provably powerful graph networks. Advances in neural information processing
systems 32 (2019).

[34] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. 2018. Invariant
and equivariant graph networks. arXiv preprint arXiv:1812.09902 (2018).

[35] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel,
and Marion Neumann. 2020. TUDataset: A collection of benchmark datasets for
learning with graphs. In ICML 2020 Workshop on Graph Representation Learning
and Beyond (GRL+ 2020).

[36] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric
Lenssen, Gaurav Rattan, and Martin Grohe. 2019. Weisfeiler and leman go neural:
Higher-order graph neural networks. In Proceedings of the AAAI conference on
artificial intelligence, Vol. 33. 4602–4609.

[37] Alireza A Namanloo, Julie Thorpe, and Amirali Salehi-Abari. 2022. Improving
Peer Assessment with Graph Neural Networks. International Educational Data
Mining Society (2022).

[38] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning
convolutional neural networks for graphs. In International conference on machine
learning. PMLR, 2014–2023.

[39] Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. 2021.
DropGNN: Random dropouts increase the expressiveness of graph neural net-
works. Advances in Neural Information Processing Systems 34 (2021), 21997–22009.

[40] Pál András Papp and RogerWattenhofer. 2022. A theoretical comparison of graph
neural network extensions. In International Conference on Machine Learning.
PMLR, 17323–17345.

[41] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2020. DropE-
dge: Towards Deep Graph Convolutional Networks on Node Classification. In
International Conference on Learning Representations.

[42] Danial Saber and Amirali Salehi-Abari. 2024. Scalable Expressiveness through
Preprocessed Graph Perturbations. arXiv preprint arXiv:2406.11714 (2024).

[43] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn,
and Karsten M Borgwardt. 2011. Weisfeiler-lehman graph kernels. Journal of
Machine Learning Research 12, 9 (2011).

[44] Zhihao Shi, Xize Liang, and Jie Wang. 2023. LMC: Fast training of GNNs via
subgraph sampling with provable convergence. arXiv preprint arXiv:2302.00924
(2023).

[45] Hannu Toivonen, Ashwin Srinivasan, Ross D King, Stefan Kramer, and Christoph
Helma. 2003. Statistical evaluation of the predictive toxicology challenge 2000–
2001. Bioinformatics 19, 10 (2003), 1183–1193.

[46] Ameya Velingker, Ali Kemal Sinop, Ira Ktena, Petar Veličković, and Sreenivas
Gollapudi. 2022. Affinity-aware graph networks. arXiv preprint arXiv:2206.11941
(2022).

[47] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In International
conference on machine learning. PMLR, 6861–6871.

[48] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2022. Graph neural
networks in recommender systems: a survey. Comput. Surveys 55, 5 (2022), 1–37.

[49] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In International Conference on Learning Representa-
tions.

[50] Pinar Yanardag and SVN Vishwanathan. 2015. Deep graph kernels. In Proceedings
of the 21th ACM SIGKDD international conference on knowledge discovery and
data mining. 1365–1374.

[51] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining. 974–983.

[52] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren,Will Hamilton, and Jure
Leskovec. 2018. Hierarchical graph representation learning with differentiable

5

CIKM ’24, October 21–25, 2024, Boise, ID, USA Saber and Salehi-Abari

pooling. Advances in neural information processing systems 31 (2018).
[53] Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. 2021.

Identity-aware graph neural networks. In Proceedings of the AAAI conference on
artificial intelligence, Vol. 35. 10737–10745.

[54] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R
Salakhutdinov, and Alexander J Smola. 2017. Deep sets. Advances in neural
information processing systems 30 (2017).

[55] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. 2019. Graphsaint: Graph sampling based inductive learning method.
arXiv preprint arXiv:1907.04931 (2019).

[56] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An end-
to-end deep learning architecture for graph classification. In Proceedings of the
AAAI conference on artificial intelligence, Vol. 32.

[57] Muhan Zhang and Pan Li. 2021. Nested graph neural networks. Advances in
Neural Information Processing Systems 34 (2021), 15734–15747.

[58] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. 2021. Labeling trick:
A theory of using graph neural networks for multi-node representation learning.
Advances in Neural Information Processing Systems 34 (2021), 9061–9073.

[59] Wentao Zhang, Zeang Sheng, Mingyu Yang, Yang Li, Yu Shen, Zhi Yang, and Bin
Cui. 2022. NAFS: A Simple yet Tough-to-beat Baseline for Graph Representation
Learning. In International Conference on Machine Learning. PMLR, 26467–26483.

[60] Yongqi Zhang and Quanming Yao. 2022. Knowledge graph reasoning with
relational digraph. In Proceedings of the ACM web conference 2022. 912–924.

[61] Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. 2022. From Stars to
Subgraphs: Uplifting Any GNN with Local Structure Awareness. In International
Conference on Learning Representations.

[62] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu.
2019. Layer-dependent importance sampling for training deep and large graph
convolutional networks. Advances in neural information processing systems 32
(2019).

6

	Abstract
	1 Introduction
	2 Prediction Task and Background
	3 SE2P
	4 Experiments
	5 Conclusion and Future Work
	References

